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J. L. Kelly Jr.’s famous paper A New Interpretation of the Information
Rate (1956) suggests that the classical statistical expectation operator,
𝔼[⋅], is fairly useless in an investing context. This paper will study and
reinforce that assertion.

1 Kelly’s Contributions

No discussion of bet sizing can be had without talking about J. L.
Kelly Jr.’s 1956 paper. He wrote this paper while on the clock at
Bell Labs. While the paper appears to be a mathematical exploration
of information theory, it is really about gambling and investing. He
makes some rough tie-ins to information theory for seemingly no other
purpose than to convince his employers he was working on something
related to telecommunications.

This paper famously coined Kelly Betting, which is often talked about
but typically not fully understood by poker players and stock traders
from all walks of life. The foundation of Kelly Betting is revolution-
ary for one reason. Kelly asserted that an investor should not try to
maximize the expected value of his capital, but the logarithm of the
growth rate of his capital.

Kelly was very fascinated with gambling problems and beating the
house. He seemed very determined to discover a way to reliably walk

1



out of a casino with more money than he walked in with. We will
phrase our discussion of Kelly’s work in investment terms rather than
gambling terms.

2 The Arithmetic Nature of Expectations

This section serves as a definitional reference for expectation operators
and is largely lifted from Wikipedia.

For a discrete random variable 𝑋 with 𝑖 ∈ 1, ..., 𝑛 possible outcomes,
define the possible probabilities as 𝑝𝑖 and the outcomes as 𝑥𝑖. The
expectation of 𝑋 is

𝔼[𝑋] = 𝑝1𝑥1 + 𝑝2𝑥2 + ... + 𝑝𝑛𝑥𝑛.

In other words,

𝔼[𝑋] =
𝑛

∑
𝑖=1

𝑝𝑖𝑥𝑖.

If the random variable is continuous with probability density function
𝑓(𝑥) then the expectation is

𝔼[𝑋] = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥.

The expectation operator is fundamentally arithmetic rather than ge-
ometric. Investing is fundamentally geometric when interest is com-
pounded or gains are reinvested. There are few realistic scenarios
where investing is arithmetic. The remainder of this paper will pro-
vide confirmatory evidence for this assertion.
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3 The Pointlessness of Expectations

Kelly gives a perfect example of the pointlessness of expectation opera-
tions in investing with his gambling experiment. Consider a fair-odds
game with two outcomes, a win or a loss. The probability of a win
is 𝑝 where 𝑝 ∈ [0, 1] and the probability of a loss is 𝑞 = 1 − 𝑝. On
a win, the investor gets paid 𝑝′ = 1

𝑝 times his investment. This sat-
isfies the fair odds condition because the payout is the reciprocal of
the probability of a win. A fair odds game serves as a good baseline
for analytically studying investment behavior, because most real world
investment strategies only marginally deviate from fair odds.

Define the account value at time 𝑡 ∈ 0, ..., 𝑇 to be 𝑉𝑡. In this case,
the account value is equal to the investor’s cash value because the
investment is an instantaneous cash-in cash-out transaction.

To illustrate the pointlessness of expectations operations in investing,
we will prove the following two assertions.

I. The investor maximizes 𝔼[𝑉𝑡] for any 𝑡 by investing his entire account
each time. II. The investor loses his entire account with a probability
of one as 𝑡 approaches ∞ by investing his entire account each time.

The primary assertion of this paper is that the expectation of the
account value is a poor objective function for optimizing an investment
strategy. Proving the previous two assertion independently will prove
the primary assertion of this paper.

3.1 Proving Assertion I

First, define 𝑉𝑡 as follows, where the investor bets a fraction 𝛾 of his
capital each time. Let 𝑥𝑡 ∈ {0, 1} represent a loss or a win on attempt
𝑡.

𝑉1 = (1 − 𝛾)𝑉0 + 𝛾𝑉0𝑝′𝑥1

Re-arranging terms, we get the following expression which standard-
izes against the initial capital 𝑉0.
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𝑉1 = 𝑉0(1 − 𝛾 + 𝛾𝑝′𝑥1)

Extending time to 𝑡 = 2, we get the following.

𝑉2 = 𝑉0(1 − 𝛾 + 𝛾𝑝′𝑥1)(1 − 𝛾 + 𝛾𝑝′𝑥2)

Generalizing, we get the following.

𝑉𝑡 = 𝑉0
𝑡

∏
𝑖=1

(1 − 𝛾 + 𝛾𝑝′𝑥𝑖)

If we define the wealth multiplier on a winning investment as 𝛾+ =
1 + 𝛾(𝑝′ − 1) and define the wealth multiplier on a losing investment
as 𝛾− = 1 − 𝛾, and define the number of wins as 𝑤 = ∑𝑖 𝑥𝑖, we can
re-write the above equation as the following.

𝑉𝑡 = 𝑉0𝛾𝑤
+ 𝛾𝑡−𝑤

−

Now that we have parameterized 𝑉𝑡 in terms of the number of wins,
we can write the expectation as follows.

𝔼[𝑉𝑡] = 𝑉0
𝑡

∑
𝑖=0

(𝑡
𝑖)𝑝𝑡−𝑖𝑞𝑖𝛾𝑡−𝑖

+ 𝛾𝑖
−

Readers will notice that this resembles the probability mass function
of the binomial distribution. Our problem is essentially a weighted
binomial expectation.

While it is likely possible, I do not have the faculties or patience to
find the following analytically.

argmax
𝛾

[𝔼[𝑉𝑡]].
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We will attempt to prove via computer simulation that 𝛾 = 1 max-
imizes the expectation expression. The following serves as proof via
computer simulation.
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import numpy as np
from scipy.special import comb as n_choose_k

def compute_the_expectation(
t: int,
p: float,
gamma: float,
V_0: float,

) -> float:

assert t >= 0
assert 0 <= p <= 1
assert 0 <= gamma <= 1
assert V_0 > 0

p_prime = 1 / p
gamma_plus = 1 - gamma + gamma * p_prime
gamma_minus = 1 - gamma

accumulator = 0
for i in range(0, t+1):

combinatoric = n_choose_k(t, i)
losses_proba = (1 - p) ** i
wins_proba = p ** (t - i)
gamma_minus_part = gamma_minus ** i
gamma_plus_part = gamma_plus ** (t - i)
accumulator += (

combinatoric *
losses_proba *
wins_proba *
gamma_minus_part *
gamma_plus_part

)

return accumulator * V_0
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# Investment is $1,000,000
V_0 = 1_000_000

# Float tolerance is a one hundredth of a cent
tolerance = 10 ** -4

for t in range(1, 100):
for p in np.arange(0.01, 1.01, 0.01):

results = []
for gamma in np.arange(0.01, 1.01, 0.01):

result = compute_the_expectation(
t=t,
p=p,
gamma=gamma,
V_0=V_0,

)
results.append(result)

# The last element is the max
for result in results[1:]:

assert results[-1] > (result - tolerance)

# The max expectation is V_0
assert (

(V_0 - tolerance) <=
results[-1] <=
(V_0 + tolerance)

)

From this simulation, a curious fact arises that the expectation is
always equal to the initial capital when the entire account is invested.
I am sure there is an elegant geometric explanation for this, but I will
not prove it here. It is also interesting to note that investing in a
fair-odds game such as this with anything less than your entire capital
reduces your expected capital to something less than what you started
with.
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3.2 Proving Assertion II

We have succeeded in proving the first condition of our argument that
expectation operators are pointless in investing. To close this case,
we must also prove that the probability of ruin approaches zero for
continuous reinvestment of capital in an expectation maximizing way.
This equates to proving the following.

lim
𝑡→∞

ℙ[∩𝑡
𝑖=1(𝑥𝑖 = 1)] = 0

Since

ℙ[∩𝑡
𝑖=1(𝑥𝑖 = 1)] = 𝑝𝑡 ,

we can write

lim
𝑡→∞

𝑝𝑡 = 0 ,

which concludes our proof for any 0 ≤ 𝑝 < 1.

4 Conclusion

The expectation is maximized by investing everything, but eventual
ruin is also guaranteed by investing everything. Such contradictory
properties make the expectation operator wholly inappropriate for fi-
nancial applications involving compounded or reinvested gains. This
fundamental knowledge seems to be largely lost and unappreciated
among the investing community. Readers are challenged to think
about which common financial performance metrics are rooted in the
expectation operator and consider whether or not these metrics are
unwise to use as objective functions.
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